The Role of Nitric Oxidei in Non-Adrenergic Non-Cholinergic Relaxation in the Guinea-Pig Gstric Fundus

  • Kim, Myung-Woo (Department of Pharmacology, College of Pharmacy, Pusan National University) ;
  • Hong, Sung-Cheul (Department of Pharmacology, College of Pharmacy, Pusan National University) ;
  • Park, Mi-Sun (Department of Pharmacology, College of Pharmacy, Pusan National University) ;
  • Hong, Eun-Ju (Department of Pharmacology, College of Pharmacy, Pusan National University) ;
  • Choi, Ji-Eun (Department of Pharmacology, College of Pharmacy, Pusan National University)
  • Published : 1995.04.01

Abstract

The role of nitric oxide (NO) in non-adrenegic non-cholinergic (NANC) neurotransmission was studied on circular muscle strips of the dorsal part of the fuinea-pig gastric fundus. In the presence of atropine and guanethidine, a low frequency-dependent relaxsations which were not affected by adrenergic and cholinergic blockage but abolished by tetrodotoxin. $N^G$-nitro-L-arginine (L-NNA), a stereospecific inhibitor of NO-biosynthesis, inhibited the relaxations induced by electrical stiumulations but not the relaxations to exogenous nitric oxide. The effect of L-NNA was prevented by L-arginine, the precursor of the NO biosynthesis but not by its enantiomer, D-arginine. Exgenous administration of No caused concentration -dependent relaxations which showed a similarity to those obtained with electrical simultaion. Hemoglobin, a NOscavenger, abolished the NO-induced relaxations and also markedly reduced those induced by electrical simultaion. The inhibitory effect os hemoglobin was similar to that of L-NNA. Application of ATP caused weak relaxations compared with those to electrical stimultaion, which were unaffected by L-NNA. Exogenously applied vasoactive intestinal polypeptide (VIP) induced concentration-dependent relaxation which was not affected by L-NNA. These results suggest that NO is produced and released mainly as a neurotransmitter from enteric neurons during NANC relaxation induced by low frequencies and short trains of electrical simulation and has a main role in NANC neurotransmission at relaxation induced by these electrical simultaions in the guinea-pig gastric fundus.

Keywords