Generic submanifolds of a quaternionic kaehlerian manifold with nonvanishing parallel mean curvature vector

  • Jung, Seoung-Dal (Department of Mathematics Teachers College Kyungpook National University) ;
  • Pak, Jin-Suk (Department of Mathematics Teachers College Kyungpook National University)
  • Published : 1994.08.01

Abstract

A sumbanifold M of a quaternionic Kaehlerian manifold $\tilde{M}^m$ of real dimension 4m is called a generic submanifold if the normal space N(M) of M is always mapped into the tangent space T(M) under the action of the quaternionic Kaehlerian structure tensors of the ambient manifold at the same time.The purpose of the present paper is to study generic submanifold of quaternionic Kaehlerian manifold of constant Q-sectional curvature with nonvanishing parallel mean curvature vector. In section 1, we state general formulas on generic submanifolds of a quaternionic Kaehlerian manifold of constant Q-sectional curvature. Section 2 is devoted to the study generic submanifolds with nonvanishing parallel mean curvature vector and compute the restricted Laplacian for the second fundamental form in the direction of the mean curvature vector. As applications of those results, in section 3, we prove our main theorems. In this paper, the dimension of a manifold will always indicate its real dimension.

Keywords