DOI QR코드

DOI QR Code

Free Energy of Ion Hydration

  • Kim, Hag-Sung (Department of Chemistry, Kyungpook National University) ;
  • Chung, Jong-Jae (Department of Chemistry, Kyungpook National University)
  • Published : 1993.04.20

Abstract

The influence of temperature and pressure on the free energy of the ion hydration has been considered. The ion radii measured by conductometric method and the saturated dielectric constant cited from other works were used to calculate the free energy in the hydration shell. The Born equation was modified in order to fit in our model. In our model, the environment of ion consists of three regions. The innermost one is the hydration shell in which water is immobilized and electrostricted, the middle one is the one which contains less ordered waters than the bulk medium, and the outermost one is the bulk water which is under the influence of the electric field of ion. Our results for the free energy of ion hydration were compared with those of other attempts. Especially, ${\Delta}$G$_{hyd}$ of $Li^+$ ion is considerably too negative in this study at given temperature, comparing with those of other attempts. But ${\Delta}$G$_{hyd}$ of other ions coincides with each other.

Keywords

References

  1. Z. Phys. v.1 M. Born
  2. J. Chem. Phys. v.1 J. D. Bernal;F. D. Foeler
  3. J. Chem. Phys. v.85 T. P. Straatsma;H. J. C. Berenden;J. P. M. Postma
  4. J. Chem. Phys. v.7 W. M. Latimer;K. S. Pitzer;C. M. Slanksy
  5. J. Am. Chem. Soc. v.84 R. M. Noyes
  6. J. Am. Chem. Soc. v.86 R. H. Stokes
  7. Chem. Phys. Lett. v.19 H. Block;S. M. Walker
  8. J. Phys. Chem. v.89 A. A. Rashin;B. Honig
  9. J. Phys. Chem. v.90 M. Bucher;T. L. Porter
  10. J. Chem. Soc. Faraday Trans. I v.74 M. H. Abraham;J. Liszi
  11. J. Phys. Chem. v.72 R. H. Wood;D. E. Delaney
  12. J. Phys. Chem. v.62 J. H. Saylor;R. Battino
  13. Chem. Rev. v.77 E. Wilhelm;R. Battino;R. J. Wilcock
  14. J. Chem. Soc. Faraday Trans. I v.87 Y. Marcus
  15. D. S. thesis, Kyungbook National University H. S. Kim
  16. J. Kor. Chem. Soc. v.35 J. U. Hwang;H. S. Kim;S. K. Cha;E. H. Park
  17. J. Kor. Chem. Soc. v.36 J. U. Hwang;J. J. Chung;H. S. Kim
  18. Int. J. Quantum Chem. Quantum. Chem. Symp. v.25 R. R. Contreras;A. J. Aizman
  19. Discuss. Faraday Soc. v.24 H. S. Frank;W. Y. Wen
  20. J. Phys. Chem. v.66 F. H. Fisher
  21. Modern Electrochemistry v.1 J. O'M. Bockris;A. K. N. Reddy
  22. J. Phys. Chem. v.95 D. Morales-Lagos;J. S. Gomez-Jeria
  23. J. Am. Chem. Soc. v.106 J. Chandrasekhar;D. C. Spellmeyer;W. L. Jorgensen
  24. Chem. Phys. Lett. v.156 Kwang S. Kim
  25. J. Chem. Phys. v.11 P. Cieplak;P. Kollman
  26. J. Phys. Chem. v.94 E. Guardia;J. A. Padro
  27. J. Chem. Phys. v.9 L. X. Dang
  28. The Nature of The Chemical Bond and Structure of Molecules and Crystals L. Pauling
  29. J. Chem. Soc. Faraday Trans. I v.76 M. H. Abraham;J. Liszi
  30. Water and Aqueous Solutions A. Ben-Naim
  31. J. Am. Chem. Soc. v.81 J. E. Lind;JR. James;J. Zwolenik;R. M. Fuoss
  32. J. Phys. Chem. v.82 J. I. Kim
  33. Electrolyte Solutions R. A. Robinson;R. H. Stokes
  34. J. Phys. Chem. v.63 JR. E. R. Nightingale
  35. Structure of Aqueous Electrolyte Solutions and Hydration of ions O. Ya. Samoilov
  36. Solvent Effects on Chemical Phenomina E. S. Amis;J. F. Hinton
  37. Advances in High Pressure Research v.2 R. A. Horne;R. S. Bradley(ed.)
  38. J. Rev. Rhys. Chem. Japan v.42 M. Nakahara;K. Shimizu;J. Osugi
  39. J. Nippon Kagaku Zasshi v.92 M. Nakahara;K. Shimizu;J. Osugi
  40. J. Am. Chem. Soc. v.113 L. Dang;J. Rice;J. Caldwell;P. A. Kollman
  41. J. Rev. Rhys. Chem. Japan v.40 M. Nakahara;K. Shimizu;J. Osugi
  42. J. Chem. Soc. Faraday Trans. I v.79 M. H. Abraham;E. Matteoli;J. Liszi
  43. J. Phys. Chem. v.67 M. J. Blandamer;M. C. R. Symons
  44. Water a Comprehensive Treatise H. L. Friedman;C. V. Krishman;F. Franks(ed.)

Cited by

  1. Solvent effect on K+ to Na+ ion mutation: a Monte Carlo simulation study vol.540, pp.1, 1993, https://doi.org/10.1016/s0166-1280(00)00718-1
  2. Monte Carlo Simulation Study of Solvent Effect on &Dgr;log Ks of Rb+ and K+ Ion to 18-Crown-6 vol.106, pp.44, 1993, https://doi.org/10.1021/jp021190y
  3. Monte Carlo Simulation Study of Solvent Effect on Selectivity of 18-Crown-6 to between La3+ and Nd3+ Ion vol.24, pp.6, 2003, https://doi.org/10.5012/bkcs.2003.24.6.751
  4. QSPR Analysis of Solvent Effect on Selectivity of 18-Crown-6 between $Nd^{3+}$ and $Eu^{3+}$ Ions: a Monte Carlo Simulation Study vol.27, pp.12, 1993, https://doi.org/10.5012/bkcs.2006.27.12.2011
  5. Selectivity of between K+ and Na+ Ions to 12-Crown-4: QSPR Analysis by a Monte Carlo Simulation Study vol.29, pp.2, 1993, https://doi.org/10.5012/bkcs.2008.29.2.431
  6. QFPR Analysis for Selectivity of between Na+ and Li+ Ions to 12-Crown-4: by a Monte Carlo Simulation Study vol.31, pp.10, 1993, https://doi.org/10.5012/bkcs.2010.31.10.2823