AN EXISTENCE OF LINEAR SYSTEMS WITH GIVEN TRANSFER FUNCTION

  • Published : 1993.02.01

Abstract

A vector space K with scalar product <.,.> is called a Krein space if it can be decomposed as a northogonal sum of a Hilbert space and an anti-space of a Hilbert space. The space K induces a Hilbert space $K_{J}$ in the inner product <.,.> $K_{J}$=<.,.>K, where $J^{2}$=I. the eigenspaces of J are denoted by $K^{+}$$_{J}$, which is a Hilbert space and $K^{-}$$_{J}$, which is an anti-space of a Hilbert space. Then the Krein space K is the orthogonal sum of $K^{+}$$_{J}$ and $K^{-}$$_{J}$. Such a decomposition of K is called a fundamental decomposition. In general, fundamental decompositions are not unique. The norm of the Hilbert space depends on the choice of a fundamental decomposion, but such norms are equivalent. The topology generated by these norms is called the strong or Mackey topology of K. It is used to define all topological notions on the Krein space K with respect to this topology. The Pontryagin index of a Krein space is the dimension of the antispace of a Hilbert space in any such decomposition. the dimension does not depend on the choice of orthogonal decomposition. A Krein space is called a Pontryagin space if it has finite Pontryagin index.dex.yagin index.dex.

Keywords