Abstract
The solution structures of the vanadium(V) complexes of iminodiacetate analogues, such as iminodiacetate (IDA), methyliminodiacetate (MeIDA), ethyliminodiacetate (EtIDA), benzyliminodiacetate (BzIDA), pyridine-2,6-dicarboxylate (DPA), and 2-hydroxyethyliminodiacetate (HEIDA), have been studied by $^{13}C-$ and $^{51}V$-NMR spectroscopy. Assuming that the complexes have a $cis-VO_2$ core, IDA, MeIDA, EtIDA, and BzIDA act as facial tridentate ligands to form octahedral complexes, whereas DPA coordinates to $VO_2^+$ as a meridional tridentate. And one water molecule fulfills the remaining site to satisfy the coordination number of six. But HEIDA coordinates to $VO_2^+$ through one IDA moiety and one hydroxyl group, acting as a tetradenate.