Effect of $CO_2$ Enrichment on Photosynthetic Rates, Enzyme Activity rind End Products of toro Poplar Clones, 1-214 (Populus euramericana) and Peace (P. Koreana x P. trichocarpa)

  • Published : 1992.07.01

Abstract

Two comparative poplar clones (I-214: Populus euramerinm, Peace: P koreana x p. trihocarpa) were exposed to two $CO_2$ concentrations (350 or 2, 000 ${\mu}L L^{-1} CO_2$) for 21 days. When both poplar clones were compared at growth conditions, the net photosynthetic rate ($P_N$) in $CO_2$-enriched ($2, 000{\mu}L L^{-1} CO_2 = C_{2, 000}$) plants become about 50-60% higher than that of 350 ${\mu}L L^{-1} CO_2 (=C_{350}$ Plants on 7 days treatment. But the enhancement of PN by high $CO_2$ was not maintained throughout all the experimental period. At 21 days, there was no difference of photosynthetic rates between $C_{350}$ and $C_{2000}$ plants. In contrast with photosynthesis, the response of leaf conductance to the elevated $CO_2$ concentration was very different between I-214 and Peace. During all experimental period, leaf conductance ($g_{s}$) of $C_{2000}$ plants is 50% lower than that of the $C_{350}$ plants for I-214, while there is no difference of gs between the plants of $C_{350}$ and $C_{2, 000}$ for Peace. The results of gs in Peace indicate that decreased photosynthetic rate after 21 days in $C_{2, 000}$ Plants for two poplar clones is possibly due to non-stomatal factors. To investigate the non-stomatal factors, starch accumulation and ribulose-1, 6-bisphosphate carboxylase (RuBPCase) were measured. We found significant accumulation of starch in two poplar clones exposed to high $CO_2$, especially starch of I-214 in $C_{2, 000}$ become 3.5 times higher than in $C_{350}$ plants at 21 days. This suggests that high proportion of photosynthates was directed into starch. After 21 days, the activity of ribulose-1, 6-bisphosphate carboxylase of $C_{2, 000}$ plants become decreased in 40-50% compared with that of the $C_{350}$ plants. Two poplar clones show the same trend to RuBPCase declines under high $CO_2$ concentration, although the decline is more significant for I-214. The results reported here suggest that starch accumulation and decreased RuBPCase activity in $C_{2, 000}$ plants can be partly ascribed to the loss of photosynthetic efficiency of high $CO_2$-grown poplar plants.

Keywords