Convexity preserving piecewise rational interpolation for planar curves

  • Published : 1992.08.01

Abstract

This paper uses a piecewise ratonal cubic interpolant to solve the problem of shape preserving interpolation for plane curves; scalar curves are also considered as a special case. The results derived here are actually the extensions of the convexity preserving results of Delbourgo and Gregory [Delbourgo and Gregory'85] who developed a $C^{1}$ shape preserving interpolation scheme for scalar curves using the same piecewise rational function. They derived the ocnstraints, on the shape parameters occuring in the rational function under discussion, to make the interpolant preserve the convex shape of the data. This paper begins with some preliminaries about the rational cubic interpolant. The constraints consistent with convex data, are derived in Sections 3. These constraints are dependent on the tangent vectors. The description of the tangent vectors, which are consistent and dependent on the given data, is made in Section 4. the convexity preserving results are explained with examples in Section 5.

Keywords