DOI QR코드

DOI QR Code

Equilibrium and Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Argon

  • Published : 1991.06.20

Abstract

The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-correlation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients for simple liquids are valid.

Keywords

References

  1. J. Chem. Phys. v.19 M. S. Green
  2. J. Chem. Phys. v.20 M. S. Green
  3. J. Chem. Phys. v.22 M. S. Green
  4. J. Phys. Soc. Japan v.12 R. Kubo
  5. Phys. Rec. v.A1 B. J. Alder;T. E. Wainwright
  6. J. Stat. Phys. v.24 J. J. Erpenbeck;W. W. Wood
  7. Fundamental Problems in Statistical Mechanics III W. W. Wood;E. G. D. Cohen(ed.)
  8. Modern Theoretical Chemistry. Vol. 6. Statistical mechanics, Part B. Time-Dependent Process J. Kushik;B. J. Berne
  9. Molec. Phys. v.37 D. J. Evans
  10. Phys. Lett. v.A74 D. J. Evans
  11. J. Stat. Phys. v.22 D. J. Evans
  12. Phys. Rev. v.A22 W. G. Hoover;D. J. Evans;R. B. Hickman;A. J. C. Ladd;W. T. Ashurst;B. Moran
  13. Physica v.103A D. J. Evans;H. J. M. Hanley
  14. Phys. Rev. v.A23 D. J. Evans
  15. Molec. Phys v.42 D. J. Evans
  16. Phys. Lett. v.A91 D. J. Evans
  17. Phys. Rev. v.A28 D. J. Evans;W. G. Hoover;B. H. Failor;B. Moran;A. J. C. Ladd
  18. J. Phys. v.C16 M. J. Gillan;M. Dixon
  19. J. Chem. Phys. v.78 D. J. Evans
  20. Physica v.118A D. J. Evans
  21. Chem. Phys. v.77 D. J. Evans;G. P. Morris
  22. Phys. Rev. v.A30 D. J. Evans;G. P. Morris
  23. Phys. Lett. v.129 A. D. Simmons;P. H. Cummings
  24. Phys. Rev. v.A34 D. J. Evans
  25. J. Phys. F:Met. Phys. v.17 P. T. Cummings;G. P. Morris
  26. J. Phys. F:Met. Phys. v.18 P. T. Cummings;G. P. Morris
  27. J. Chem. Phys. v.89 P. T. Cummings;T. L. Varner
  28. Phys. Rep. v.1 D. J. Evans;G. P. Morris
  29. J. Stat. Phys. v.21 G. Ciccotti;G. Jacucci;I. R. McDonald
  30. Molec. Phys. v.54 G. P. Morriss;D. J. Evans
  31. J. Reine Angew. Math. v.IV K. F. Gauss
  32. J. Phys. v.C5 A. W. Lees;S. F. Edwards
  33. Numerical Initial Value Problems in Ordinary Differential Equations W. C. Gear
  34. Physical science part Proceedings of the 10th Korean Scientists and Engineerings Conference S. H. Lee;P. J. Rossky
  35. Phys. Rev. v.136A A. Rahman
  36. Computer Applications of Numerical Methods S. H. Kuo
  37. Argon, Helium and the Rare Gases G. A. Cook

Cited by

  1. A molecular dynamics simulation study on nematic-isotropic phase transition of rod‐like molecules in NpT ensemble vol.97, pp.9, 1991, https://doi.org/10.1063/1.463647
  2. Mobility Transition of Solid Rare Gases in Confined Environments vol.88, pp.15, 1991, https://doi.org/10.1103/physrevlett.88.155701
  3. Deep inelastic neutron scattering ofH2in single-walled carbon nanotubes vol.65, pp.23, 2002, https://doi.org/10.1103/physrevb.65.233401
  4. Molecular Dynamics Simulations for Transport Coefficients of Liquid Argon : New Approaches vol.24, pp.2, 1991, https://doi.org/10.5012/bkcs.2003.24.2.178
  5. Size Effect on Transport Properties of Liquid Argon: A Molecular Dynamics Simulation Study vol.58, pp.5, 1991, https://doi.org/10.5012/jkcs.2014.58.5.500
  6. Viscosity calculations at molecular dynamics simulations vol.653, pp.1, 2015, https://doi.org/10.1088/1742-6596/653/1/012106