Journal of the Society of Naval Architects of Korea (대한조선학회논문집)
- Volume 28 Issue 2
- /
- Pages.159-173
- /
- 1991
- /
- 1225-1143(pISSN)
- /
- 2287-7355(eISSN)
A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil
양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析)
Abstract
This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.
본 논문에서는 양력판 이론을 사용하여 2차원 수중익에 발생한 비 대칭 초월 공동 문제를 포텐셜을 기저로하여 수치 해석하였다. 수중익과 공동 표면에 법선 다이폴을 분포하고 공동 표면에는 공동 형상을 찾기위하여 쏘오스를 분포하였다. 수중익 표면에서의 운동학적 경계조건은 수중익 내부에서의 전체 포텐셜이 0이라는 조건으로 대치하였고 공동 표면에서의 역학적 경계조건은 공동 표면에서의 접선 방향 속도가 일정하다는 조건으로 표현되었다. 표면에 특이 함수를 분포하여 포텐셜을 기저로하여 공동 문제를 해석하였기 때문에 압력 분포에 대하여, 특히 수중익의 앞날 근처에서는 양력면 이론에 의한 결과보다 더욱 향상된 정도의 결과를 얻었다. 본 이론은 먼저 주어진 공동 길이에 대하여 그에 상응하는 공동 형상 및 공동수를 구하였다. 좀더 좋은 결과를 얻기 위하여 새로이 계산된 공동 표면과 수중익 표면에 또 다시 특이 함수를 분포하여 그곳에서 경계 조건을 만족시킴으로써 새로운 공동 형상 및 공동수를 구하는 반복 계산을 수행하였다. 본 이론에 의한 계산 결과의 검증을 위하여 폭 넓은 수렴성 시험을 수행하였으며 특히, Geurst의 선형 이론에 의한 해석해 및 Wu의 비 선형 이론에 의한 해석해, 그리고 Acosta, Parkin, Meijer, Silberman, Waid의 실험 결과와 비교한 결과, 본 이론의 효용성을 입증하였다.
Keywords