Journal of Biosystems Engineering
- Volume 15 Issue 4
- /
- Pages.319-327
- /
- 1990
- /
- 1738-1266(pISSN)
- /
- 2234-1862(eISSN)
Learning Performance and Design of Cerebellum Model Linear Associator Network
소뇌모델 선형조합 회로망의 학습능률과 회로망 설계
Abstract
시스템의 적응 제어함수를 산출하는 네트워크인 소뇌모델 선형조합 회로망을 이용한 학습제어 기법은 시스템에 영향을 주는 제어인자들의 불확실성 및 모델링의 결여에도 불구하고 오히려 안정한 실시간 제어의 구현을 가능하게 함으로써 대단한 관심을 불러 일으켜 왔다. 그러나, 센서로부터의 정보처리와 인식 그리고 복잡한 비선형 시스템의 제어에 적용하기에는 회로망 자체의 내재적 문제점들이 여전히 남아있다. 소뇌모델 선형조합 회로망을 기지 또는 미지의 시스템 모델에 효과적으로 적용하기 위해서는 네트워크에 영향을 주는 제어인자가 시스템에 미치는 영향을 분석하는 것이 필수적이다. 분할 블럭의 크기, 학습이득, 입력편이 그리고 입력변수들의 영역과 같은 네트 제어인자들은 시스템의 학습 능률 및 소요 기억용량의 크기에 중대한 영향을 미침에도 불구하고 충분히 조사되지 못한 실태이다. 물론 이들 제어인자들의 결정에는 학습 대상이 되는 시스템 함수의 형태와 적용 학습 알고리즘이 반드시 고려되어야 한다. 본 논문에서는 학습 능률성에 미치는 이들 제어인자들의 상호영향도를 저자가 제안하였던 기본 학습 알고리즘에 의거하여 조사하였다. 분석적인 방법만으로 이러한 상호영향성을 조사하기는 매우 힘들거나 거의 불가능하다고 보아지기 때문에 학습 대상함수를 먼저 규정하여 다양한 컴퓨터 모의시험을 수행하였고 그 결과를 분석하였다. 컴퓨터 모의시험의 결과에 의하여 회로망의 시스템 적용시 고려할 설계 지침을 제시하였다.
Keywords