AUTOMORPHISMS OF SOME $C^*$-ALGEBRAS

  • Published : 1988.08.01

Abstract

Versions of Tannaka duality in operator algebraic context have been obtained in [6], [8] etc. Suppose .sigma.is an automorphism of a von Neumann algebra M, on which there is an action .alpha. of a compact group G such that .sigma. vertical bar $M^{\alpha}$=id, where $M^{\tau}$is the fixed point algebra under the action .alpha.. Then it is shown that if there is an action .tau. of a group H which commutes with .alpha., and which is ergodic in the sense that the fixed point algebra $M^{\tau}$ is trivial, then there exists g.mem.G such that .sigma.=.alpha.(g). Recently Evans and Kishimoto ([4]) showed the versions of Tannaka duality in $C^{*}$-settings under some conditions.s.

Keywords