SVD Pseudo-inverse and Application to Image Reconstruction from Projections

SVD Pseudo-inverse를 이용한 영상 재구성

  • 심영석 (한국과학원 전기 및 전자공학과) ;
  • 김성필 (한국과학원 전기 및 전자공학과)
  • Published : 1980.06.01

Abstract

A singular value decomposition (SVD) pseudo-inversion method has been applied to the image reconstruction from projections. This approach is relatively unknown and differs from conventionally used reconstructioll methods such as the Foxier convolution and iterative techniques. In this paper, two SVD pseudo-inversion methods have been discussed for the search of optimum reconstruction and restoration, one using truncated inverse filtering, the other scalar Wiener filtering. These methods partly overcome the ill-conditioned nature of restoration problems by trading off between noise and signal quality. To test the SVD pseudo-inversion method, simulations were performed from projection data obtained from a phantom using truncated inversefiltering. The results are presented together with some limitations particular to the applications of the method to the general class of 3-D image reconstruction and restoration.

Singular value decomposition을 통한 pseudo-inverse를 단층영상 재구성에 이용하였다. 본 논문에서는 SVD pseudo-inverse를 이용한 truncated inverse filter와 Scalar Wiener filter에 대하여 검토하고 각각에 대하여 통계적 측면에서의 최적화가 연구되었다. 이러한 방법은 신호와 잡음문에 trade-off를 기함으로써 재구성 문제에 항상 뒤따르는 ill-conditioning 현상을 극복할 수 있다. 본 논문을 통하여 구성된 filter의 성능을 확인하기 위하여 컴퓨터를 이용한 simulation이 이루어졌으며 그 결과 재구성된 협상은 만족할 만 하였다.

Keywords