과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00208397). 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 인공지능융합혁신인재양성사업연구 결과로 수행되었음(IITP-2023-RS-2023-00256629) 본 연구는 과학기술정보통신부및 정보통신기획평가원의 대학ICT연구센터사업의 연구결과로 수행되었음(IITP-2024-RS-2024-00437718)
참고문헌
- J. H. Cole, K. Franke, "Predicting age using neuroimaging: innovative brain ageing biomarkers," Trends in Neurosciences, vol. 40, no. 12, pp. 681-690, 2017.
- J. H. Cole, R. P. Poudel, D. Tsagkrasoulis, M. W. Caan, C. Steves, T. D. Spector, G. Montana, "Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker,"NeuroImage, vol. 163, pp. 115-124, 2017.
- J. Sun, Z. Tu, D. Meng, Y. Gong, M. Zhang, J. Xu, "Interpretation for individual brain age prediction based on gray matter volume," Brain Sciences, vol. 12, no. 11, p. 1517, 2022.
- Joo, Yoonji, et al. "Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms." Scientific Reports13.1, 2023.
- Sun, Jiancheng, et al. "Interpretation for individual brain age prediction based on gray matter volume." Brain Sciences 12.11, 2022.
- He, X., Wang, A. Q., Sabuncu, M. R., "Neural pre-processing: A learning framework for end-to-end brain MRI pre-processing," in International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham, Switzerland, 2023, pp. 258-267.
- Sun, X., Shi, L., Luo, Y., Yang, W., Li, H., Liang, P., Wang, D., "Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions," Biomedical Engineering Online, vol. 14, pp. 1-17, 2015.
- Kumari, LK Soumya, and R. Sundarrajan. "A review on brain age prediction models." Brain Research, 2023
- A. Di Martino, C. G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts, M. P. Milham, "The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism," Molecular Psychiatry, vol. 19, no. 6, pp. 659-667, 2014.
- A. J. Holmes, M. O. Hollinshead, T. M. O'Keefe, V. I. Petrov, G. R. Fariello, L. L. Wald, B. Fischl, B. R. Rosen, R. W. Mair, J. L. Roffman et al., "Brain genomics superstruct project initial data release with structural, functional, and behavioral measures," Scientific Data, vol. 2, p. 150031, 2015.
- X. N. Zuo, J. S. Anderson, P. Bellec, R. M. Birn, B. B. Biswal, J. Blautzik, J. Breitner, R. L. Buckner, V. D. Calhoun, F. X. Castellanos, "An open science resource for establishing reliability and reproducibility in functional connectomics," Scientific Data, vol. 1, pp. 1-13, 2014.
- IXI Dataset, Available: https://brain-development.org/ixi-dataset/.
- P. J. LaMontagne, S. Keefe, W. Lauren, C. Xiong, E. A. Grant, K. L. Moulder, J. C. Morris, T. L. Benzinger, D. S. Marcus, "OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer's disease," Alzheimer's & Dementia: The Journal of the Alzheimer's Association, vol. 14, no. 7, p. P1097, 2018.
- D. Wei, K. Zhuang, L. Ai, Q. Chen, W. Yang, W. Liu, J. Qiu, "Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset," Scientific Data, vol. 5, no. 1, pp. 1-10, 2018.
- Penny, William D., et al., eds. Statistical parametric mapping: the analysis of functional brain images. Elsevier, 2011.