Acknowledgement
이 논문은 2024 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(No.RS-2022-00155966, 인공지능융합혁신인재양성(이화여자대학교))
References
- 개인정보보호위원회, "합성데이터 생성 참조모델," 개인정보보호위원회, 대한민국, 2023.
- M. Giuffre, D. L. Shung, "Harnessing the power of synthetic data in healthcare: innovation, application, and privacy," NPJ Digital Medicine, vol. 6
- H. Murtaza, M. Ahmed, N. F. Khan, G. Murtaza, S. Zafar, A. Bano, "Synthetic data generation: State of the art in health care domain," Computer Science Review, vol. 48, pp. 100546, May 2023.
- M. Dogariu, B. Kim, L.-D. Stefan, B.-A. Boteanu, C. Lamba, B. Ionescu, "Generation of Realistic Synthetic Financial Time-series," ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 18, no. 3, Mar. 2022
- M. Goyal, Q. H. Mahmoud, "Privacy Mechanisms and Evaluation Metrics for Synthetic Data Generation: A Systematic Review," Electronics, vol. 13, no. 17, pp. 3509, Sept. 2024.
- Z. Zhao, A. Kunar, R. Birke, L. Y. Chen, "CTAB-GAN: Effective Table Data Synthesizing," in Proceedings of The 13th Asian Conference on Machine Learning, PMLR, vol. 157, pp. 97-112, Nov. 2021.
- M. Vero, M. Balunovic, M. Vechev, "CuTS: Customizable Tabular Synthetic Data Generation," in Proceedings of the 41st International Conference on Machine Learning, PMLR, vol. 235, pp. 49408-49433, July 2024.
- T. Sattarov, M. Schreyer, D. Borth, "FedTabDiff: Federated Learning of Diffusion Probabilistic Models for Synthetic Mixed-Type Tabular Data Generation," arXiv preprint, arXiv:2401.06263, Jan. 2024.
- K. Cai, X. Xiao, G. Cormode, "PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy," Proceedings of the ACM on Management of Data, vol. 1, no. 2, pp. 142:1-142:25, 2023.
- M. Park, S. Kang, "Row Conditional-TGAN for generating synthetic relational databases," Proceedings of the 2021 International Conference on Data Mining and Applications, pp. 78-85, 2021.
- M. Miletic, M. Sariyar, "Challenges of Using Synthetic Data Generation Methods for Tabular Microdata," Applied Sciences, vol. 14, no. 14, pp. 5975, 2024.
- V. S. Chundawat, A. K. Tarun, M. Mandal, M. Lahoti, P. Narang, "TabSynDex: A Universal Metric for Robust Evaluation of Synthetic Tabular Data," arXiv preprint, arXiv:2207.05295, July 2022.
- M. Hernandez, G. Epelde, A. Alberdi, R. Cilla, D. Rankin, "Synthetic Tabular Data Evaluation in the Health Domain Covering Resemblance, Utility, and Privacy Dimensions," Methods of Information in Medicine, vol. 62, no. 1, pp. 11-22, 2023.
- A. Goncalves, P. Ray, B. Soper, J. Stevens, L. Coyle, A. P. Sales, "Generation and Evaluation of Synthetic Patient Data," BMC Medical Research Methodology, vol. 20, no. 1, pp. 1-13, May 2020.
- S. C. Yang, B. Eaves, M. Schmidt, K. Swanson, P. Shafto, "Structured Evaluation of Synthetic Tabular Data," arXiv preprint, arXiv:2403.10424, March 2024.
- C. A. Mami, A. Coser, A. T. P. Boudewijn, M. Volpe, M. Whitworth, D. Panfilo, S. Saccani, "Generating Realistic Synthetic Relational Data through Graph Variational Autoencoders," Proceedings of NeurIPS 2022, Dec. 2022.
- N. Patki, R. Wedge, K. Veeramachaneni, "The Synthetic Data Vault (SDV)," in Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 399-410, Oct. 2016.
- A. V. Solatorio, O. Dupriez, "REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers," arXiv preprint, arXiv:2302.02041, Feb. 2023.
- A. Sanfeliu, K. S. Fu, "A distance measure between attributed relational graphs for pattern recognition," IEEE Transactions on Systems, Man, and Cybernetics, vol. 13, no. 3, pp. 353-362, 1983.
- H. Whitney, "Congruent Graphs and the Connectivity of Graphs," American Journal of Mathematics, vol. 54, pp. 150-168, 1932.
- L. Sweeney, "k-Anonymity: A Model for Protecting Privacy," International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, vol. 10, no. 5, pp. 557-570, 2002.
- A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, "ℓ-Diversity: Privacy Beyond k-Anonymity," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3-23, March 2007.