과제정보
본 연구는 한국수자원공사(K-water) 수자원위성 지상운용체계 구축사업의 지원을 받아 수행되었습니다.
기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.
본 연구는 한국수자원공사(K-water) 수자원위성 지상운용체계 구축사업의 지원을 받아 수행되었습니다.