Acknowledgement
이 논문은 2023 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.RS-2022-00155586, 실세계의 다양한 다운스트림 태스크를 위한 고성능 빅 하이퍼그래프 마이닝 플랫폼 개발(SW 스타랩))
DOI QR Code
대화형 추천 시스템은 대화를 통해 사용자의 현재 선호도를 파악하고 상품을 추천해주는 시스템이다. 대화의 맥락은 변화하기 때문에 대화 중 최근 언급된 엔티티가 사용자의 현재 선호와 더 관련이 있다. 그러나, 기존 방법들은 언급된 엔티티들의 순서를 고려하지 않았기 때문에 사용자의 현재 선호도를 표현하는데 한계가 존재한다. 본 논문에서는, 대화 내 언급된 엔티티들의 순서를 고려하는 아키텍처를 제안하고, 실세계 데이터를 활용해 다음 상품을 예측하는데 엔티티 순서를 고려하는 것이 효과적인지 실험을 통해 보여준다.
이 논문은 2023 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.RS-2022-00155586, 실세계의 다양한 다운스트림 태스크를 위한 고성능 빅 하이퍼그래프 마이닝 플랫폼 개발(SW 스타랩))