과제정보
본 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2017-0-00072, 초실감 테라미디어를 위한 AV 부호화 및 LF 미디어 원천기술 개발).
JVET 은 VVC(Versatile Video Coding) 표준화 완료 이후 보다 높은 압축 성능을 갖는 차세대 비디오 코덱의 표준 기술을 탐색하고 있으며 ECM(Enhanced Compression Model) 참조 소프트웨어를 통해 제안된 알고리즘의 성능을 검증하고 있다. 현재 ECM 에서는 정해진 순서에 의해 병합(Merge) 후보를 구성하고 템플릿 매칭(template matching)을 통하여 후보들의 순서를 재배열하는 ARMC(Adaptive Reordering of Merge Candidate) 기법을 채택하고 있다. 본 논문은 ARMC 의 병합 후보의 선택 빈도 분석을 바탕으로 정규 병합(regular merge) 후보 수를 확장하여 구성하고, 실제 탐색에 사용되는 최종 후보의 수를 제한하는 효율적인 ARMC 후보 구성 기법을 제안한다. 실험결과 ECM 4.0 대비 Cb 와 Cr 에서 0.12%, 0.19% 비디오 부호화 성능을 확인하였다.
본 논문은 2022 년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No. 2017-0-00072, 초실감 테라미디어를 위한 AV 부호화 및 LF 미디어 원천기술 개발).