마스크 착용에 의해 왜곡된 음성의 품질 향상을 위한 CycleGAN 기술

CycleGAN for Enhancement of Degraded Speech by Face Mask

  • 발행 : 2022.06.20

초록

마스크 착용은 대화나 통화 등의 의사소통에 불편함을 초래하고 음성의 품질과 명료도를 떨어트린다. 이를 해결하기 위해 음성 향상 기술이 필요하며, 머신러닝 기반의 다양한 음성 향상 방법이 개발되었다. 지도 학습을 위해 마스크 착용 유무에 따라 일대일로 대응된 음성 데이터를 확보하는 것은 매우 어렵고, 따라서 일대일로 대응된 데이터가 필수적이지 않은 비지도 학습이 요구된다. 본 논문에서는 비지도 학습방식을 사용하면서 콘텍스트를 유지하며 특징을 변경할 수 있는 CycleGAN을 이용하여 마스크 착용에 의한 음성 왜곡을 복원 시키는 기술을 제안한다. 스펙트로그램 기반으로 마스크 착용에 의해 왜곡된 음성을 마스크 미착용 음성으로 변환하여 음성의 품질을 향상시켰다. 청취평가를 진행한 결과 품질이 향상된 음원의 선호도가 더 높음을 확인하였으며 스펙트로그램을 통해 3 kHz 이상의 고대역 에너지가 증가하는 것을 확인하였다. 이를 통해 CycleGAN을 이용한 비지도 학습으로 마스크 착용에 의해 왜곡된 음성의 품질을 향상시킬 수 있음을 확인하였다.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2021R1F1A1059233).