Development of Integrated Traffic Control System

Yolov5를 적용한 교통단속 통합 시스템 설계

  • Published : 2022.10.03

Abstract

Currently, in Korea, a multi-seater lane (HOV) and a designated lane system are being implemented to solve traffic congestion. However, in both systems, it is difficult to crack down on cases of violations without permission, so people are required to be assigned to areas that want to crack down. In this process, manpower and budget are inefficiently consumed. To compensate for these shortcomings, we propose the development of an integrated enforcement system through YOLO, a deep learning object recognition model. If the two systems are implemented and integrated using YOLO, they will have advantages in terms of manpower and budget over existing systems because only data learning and system maintenance are considered. In addition, in the case of violations in which it is difficult for the existing unmanned system to crack down, the effect of increasing the crackdown rate through continuous learning can be expected.

현재 대한민국에서는 교통 혼잡을 해결하기 위해 다인승 전용차로 (HOV, High Occupancy Vehicle Lanes)와 지정차로제를 시행하고 있다. 현행의 교통단속 시스템은 단속 지역 구역에 인원이 필수로 배정되며 무인 단속에 어려움이 있다. 또한, 고정식 교통단속시스템은 속도 위반 단속은 가능하나 운전자가 네이게이션을 통해 단속을 회피할 수 있다. 이러한 문제점을 해결하기 위해 딥러닝 객체 인식 모델인 YOLO를 통한 교통 통합 단속 시스템이 필요하다. 본 연구에서는 멀티스레딩 기술 기반의 병렬처리 차량번호 인식 기술을 적용하여 불시 단속이 가능한 이동식 교통 통합 관리시스템을 제안한다. Yolo5를 이용한 차선 인식, 차량탑승인원 판별, 차량 번호 인식 등의 알고리즘을 통합 모델을 설계하고 이를 적용한 통합시스템을 제시하였다.

Keywords

Acknowledgement

본 논문은 부산광역시 및 (재)부산인재평생교육진흥원의 BB21플러스 사업으로 지원된 연구임. 또한, 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음. (IITP-2022-2016-0-00318)