IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리

AI Model Repository for Realizing IoT On-device AI

  • 발행 : 2022.10.03

초록

IoT 디바이스에서 on-device AI를 수행할 때, 타겟 서비스나 디바이스의 환경에 따라 필요한 AI 모델이 달라질 수 있다. 또한, 기존 AI 모델도 federated learning과 같이 추가적인 데이터를 이용해 트레이닝을 하거나 보다 향상된 새로운 기법을 사용하는 등 업데이트가 일어날 수 있다. 이에 따라 IoT 디바이스에서 양질의 AI 서비스를 수행하기 위해서는 상황에 따라 필요한 AI 모델을 선택적으로 사용하거나 최적화된 최신 버전의 AI 모델로 업데이트 할 수 있어야 한다. 본 논문에서는 이를 지원하기 위한 AI 모델 레포지토리를 제안한다. 레포지토리는 AI 모델의 등록, 검색, 관리 및 배포를 지원하며 실사용을 위한 웹 포털을 포함한다. 제안하는 시스템의 실효성 확인을 위해 Node.js와 Vue.js로 구현하여 동작을 확인하였다.

When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

키워드

과제정보

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (NO. 2022-0-00959, 드론 및 로봇분야에 적용 가능한 5G 환경 온디바이스 IoT 고속 지능 HW 및 SW 엔진 기술 개발).