Acknowledgement
이 논문은 부분적으로 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임(No.2018-0-00264, IoT 융합형 블록체인 플랫폼 보안 원천 기술 연구, 50%) 그리고 부분적으로 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1F1A1048478, 50%).
DOI QR Code
경찰청에 따르면 도로교통법이 개정된 이후 3개월단 개인형 이동장치(PM)를 단속한 결과 무면허 운전이 3199건에 달하는 것으로 나타났다. 공유 킥보드 서비스의 경우 회원가입을 할 때 운전면허증 취득 여부를 확인하긴 하지만 서비스를 이용할 때는 별도의 확인 절차 없이 대여할 수 있기 때문에 운전면허증을 취득하지 않았어도 대여하는 경우가 발생한다. 본 논문에서는 공유 킥보드 서비스의 보안 취약점을 보완하기 위해 오토인코더와 변이형 오토인코더를 사용한 딥러닝 기반의 공유 킥보드 대리 대여 방지 시스템을 제안한다. 오토인코더는 지문 데이터로부터 특징만을 추출할 수 있어, 사용자의 지문 원본을 서버에게 노출시키지 않을 수 있다. 변이형 오토인코더는 생성형 모델로써, 사용자의 지문 데이터를 증폭 시켜 합성곱 신경망의 성능을 높이는데 도움을 준다. 이러한 오토인코더와 변이형 오토인코더의 특징을 이용해 사용자의 지문을 서버에 노출시키지 않으면서 적은 데이터로 신뢰성 높은 사용자 인증이 가능한 전동 킥보드 대여 시스템을 제안한다.
이 논문은 부분적으로 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임(No.2018-0-00264, IoT 융합형 블록체인 플랫폼 보안 원천 기술 연구, 50%) 그리고 부분적으로 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1F1A1048478, 50%).