Acknowledgement
이 논문은 2020 년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2018R1D1A1B0704322013)
본 논문에서는 대용량의 3D 데이터 시퀀스의 압축을 진행한다. 3D 데이터 시퀀스의 각 프레임에서 Pose Estimation을 통해 3D Skeleton을 추출한 뒤, 포인트 클라우드를 skeleton에 묶는 리깅 과정을 거치고, 다음 프레임과 같은 자세로 deformation을 진행한다. 다음 프레임과 같은 자세로 변형된 포인트 클라우드와 실제 다음 프레임의 포인트 클라우드를 비교하여, 두 데이터에 모두 있는 점, 실제 다음 프레임에만 있는 점, deformation한 데이터에만 있는 점으로 분류한다. 두 데이터에 모두 있는 점을 제외하고 나머지 두 분류의 점들을 저장함으로써 3D 시퀀스 데이터를 압축할 수 있다.
이 논문은 2020 년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2018R1D1A1B0704322013)