Convolutional Neural Network Technique for Efficiently Extracting Depth of Field from Images

이미지로부터 피사계 심도 영역을 효율적으로 추출하기 위한 합성곱 신경망 기법

  • Kim, Donghui (Dept. of Software Application, Kangnam University) ;
  • Kim, Jong-Hyun (Dept. of Software Application, Kangnam University)
  • 김동희 (강남대학교 소프트웨어응용학부) ;
  • 김종현 (강남대학교 소프트웨어응용학부)
  • Published : 2020.07.15

Abstract

본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 본 논문에서 제안하는 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 빠른 시간 내에 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.

Keywords