Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP2018-0-01405). 이 논문은 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2017M3C4A7068189).
과편향 뉴스 판별(hyperpartisan news detection)은 뉴스 기사가 특정 인물 또는 정당에 편향되었는지 판단하는 task이다. 이를 위해 feature-based ELMo + CNN 모델이 제안되었으나, 이는 문서 임베딩이 아닌 단어 임베딩의 평균을 사용한다는 한계가 존재한다. 따라서 본 논문에서는 feature-based 접근법을 따르며 Sentence-BERT(SentBERT)의 문서 임베딩을 이용한 feature-based SentBERT 기반의 과편향 뉴스 판별 모델을 제안한다. 제안 모델의 효과를 입증하기 위해 ELMO, BERT, SBERT와 CNN, BiLSTM을 적용한 비교 실험을 진행하였고, 기존 state-of-the-art 모델보다 f1-score 기준 1.3%p 높은 성능을 보였다.
본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP2018-0-01405). 이 논문은 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2017M3C4A7068189).