Controlled Korean Style Transfer using BERT

BERT을 이용한 한국어 문장의 스타일 변화

  • Published : 2019.10.10

Abstract

생성 모델은 최근 단순히 기존 데이터를 증강 시키는 것이 아니라 원하는 속성을 가지도록 스타일을 변화시키는 연구가 활발히 진행되고 있다. 스타일 변화 연구에서 필요한 병렬 데이터 세트는 구축하는데 많은 비용이 들기 때문에 비병렬 데이터를 이용하는 연구가 주를 이루고 있다. 이러한 방법론으로 이미지 분야에서 대표적으로 cycleGAN[1]이 있으며 최근 자연어 처리 분야에서도 많은 연구가 진행되고 있다. 많은 논문들이 사용하는 데이터도메인은 긍정 문장과 부정 문장 사이를 변화시키는 것이다. 본 연구에서는 한국어 영화리뷰 데이터 세트인 NSMC[2]를 이용한 감성 변화를 하는 문장생성에 대한 연구로 자연어 처리에서 좋은 성능을 보여주는 BERT[8]를 생성모델에 이용하였다.

Keywords