Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP-2018-0-01405). 이 논문은 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2017M3C4A7068189).
추출 요약(Extractive summarization)은 문서내에 주요한 요약정보가 되는 문장 또는 단어를 추출하여 요약을 생성하는 기법이다. 딥러닝 기법들이 많이 발전하면서 요약 기법에도 sequence-to-sequence와 같은 많은 시도들이 있었지만 대부분의 방법론들은 딥러닝의 모델 구조관점으로 접근하거나 요약에 있어서 단순히 입력 텍스트를 넣고 알고리즘이 처리하는 머신 리딩(Machine reading)관점으로 접근한다. 텍스트 요약 태스크 자체는 사람이 텍스트에 대한 정보 파악을 요약문을 통해 빠르게 하고 싶은 궁극적인 목표가 있으므로, 사람이 텍스트 요약에 필요한 인지처리과정을 반영할 필요가 있다. 결국, 기존의 머신 리딩보다는 휴먼 리딩(Human reading)에 관한 이해와 구조적 접근이 필요하다. 따라서 본 연구는 휴먼 리딩을 위한 인지처리과정을 위해 아이트래킹 데이터 기반의 새로운 추출 요약 모델을 제안한다.
본 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 대학ICT연구센터지원사업의 연구결과로 수행되었음 (IITP-2018-0-01405). 이 논문은 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2017M3C4A7068189).