Analysis and Study of Internal Learning Trend of Deep Classifier according to Depth

깊이에 따른 중간 단계 분류기 내부 학습 경향 분석 및 고찰

  • Published : 2019.10.10

Abstract

딥러닝 모델은 자동으로 자질을 추출하고 추상화 하기 위해 깊은 은닉층을 가지며, 이전 연구들은 이러한 은닉층을 깊게 쌓는 것이 성능 향상에 기여한다는 것을 증명해왔다. 하지만 데이터나 태스크에 따라 높은 성능을 내는 깊이가 다르고, 모델 깊이 설정에 대한 명확한 근거가 부족하다. 본 논문은 데이터 셋에 따라 적합한 깊이가 다르다고 가정하고, 이를 확인하기 위해 모델 내부에 분류기를 추가하여 모델 내부의 학습 경향을 확인하였다. 그 결과 태스크나 입력의 특성에 따라 필요로 하는 깊이에 차이가 있음을 발견하였고, 이를 근거로 가변적으로 깊이를 선택하여 모델의 출력을 조절하여 그 결과 성능이 향상됨을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기술진흥센터의 지원을 받아 수행된 연구임 (No.2019-0-01755, 마취분야용 의료 딥러닝을 활용한 인공지능(ANES AI) 및 인터랙티브 OCS KIOSK 시스템 개발)