Acknowledgement
Grant : 데이터스트림 정제를 위한 지능형 샘플링 및 필터링 기술 개발
Supported by : 정보통신기술진흥센터
DOI QR Code
아파치 카프카(Apache Kafka)는 데이터 스트림을 실시간 전달하는 분산 메시지 큐잉 플랫폼이다. 카프카는 대다수의 실시간 처리 응용에 사용되는데, 흔히 데이터 스트림의 발생지와 실시간 처리 시스템 사이(입력) 또는 실시간 처리 시스템과 처리 결과의 목적지 사이(출력)에 배치된다. 분산 기술을 도입한 카프카는 다른 메시지 큐잉 기술에 비해 대용량 데이터 스트림을 더욱 빠르게 전달 할 수 있다는 장점을 갖는다. 하지만, 카프카에 적재되는 데이터 스트림의 양과 실시간 처리 응용의 수가 증가할수록 메시지 지연시간은 매우 높아질 수 밖에 없다. 본 논문은 이러한 카프카의 메시지 지연 문제를 해결하고자 카프카의 로드 쉐딩 엔진을 제안한다. 로드 쉐딩의 세 가지 필수적인 결정에 따라, 제안하는 로드 쉐딩 엔진은 카프카의 프로뷰서에서 지연시간이 기준치를 초과할 경우 일부 메시지 전송을 제한하여 지연시간을 줄인다. 실제 실시간 처리 응용으로 실험한 결과, 단일/다중 데이터 스트리 모두 로드 쉐딩이 바르게 작동하여 지연시간이 지속적으로 증가하지 않고 오르내림이 반복되는 추세를 보였다. 본 연구는 데이터 스트림의 입출력을 카프카로 관리하는 실시간 처리 응용에 로드 쉐딩 기법을 적용한 첫 번째 시도로서, 앞으로 데이터 스트림 처리에 사용될 의미 있는 연구라 사료된다.
Grant : 데이터스트림 정제를 위한 지능형 샘플링 및 필터링 기술 개발
Supported by : 정보통신기술진흥센터