한국정보통신학회:학술대회논문집 (Proceedings of the Korean Institute of Information and Commucation Sciences Conference)
- 한국정보통신학회 2018년도 춘계학술대회
- /
- Pages.460-461
- /
- 2018
상품 리뷰 분석을 통한 사용자 맞춤형 추천 시스템
Customized recommendation system through product review analysis
- Hwang, Doyeun (PaiChai University) ;
- Bae, Sangjung (PaiChai University) ;
- Kim, Changsoo (PaiChai University) ;
- Jung, Heokyung (PaiChai University)
- 발행 : 2018.05.31
초록
전통적인 방식의 추천 시스템은 사용자가 독립적으로 행동한다는 가정하에 개발된 방식이며, 단순하게 상품을 나열하거나 상품의 속성과 사용자의 기호를 연관하는 기능이 부족하여 가독성과 효율성이 떨어지는 문제점이 있다. 이를 해결하기 위해 본 논문에서는 상품 리뷰 데이터를 크롤링을 한 뒤 R을 이용한 텍스트 마이닝 기법을 사용하여 비정형의 리뷰 데이터를 사용자의 구매이력과의 연관 분석을 통해 의미 있는 정보로 가공하여 사용자 맞춤형 정보를 제공하는 시스템을 제안한다. 이를 통해 사용자는 방대한 양의 상품 리뷰 데이터를 분석할 필요 없이 자신에게 필요한 데이터만을 제공받을 수 있게 되어 사용자의 의사결정에 도움 될 것으로 사료된다.
The traditional recommendation system is developed on the assumption that users behave independently, and have problem of readability and efficiency are inferior due to simply sort products or lack of function for associate product attributes with user's taste. To solve this problem in this study we propose a system that provides user customized information that the analysis of the unstructured review data with the purchase histories of users processed with meaningful information after crawling product review data using text mining with R. This allows to help user make decisions can be provided only necessary information without analyze massive amounts of products review data.