Acknowledgement
Supported by : 정보통신기술진흥센터
DOI QR Code
Color constancy는 다양한 광원 아래에서 사물의 색을 인지하는 능력이다. 사람의 눈은 절대적인 색상을 인지하는 것이 아니라 주변 환경과의 상대적인 색상을 인지하지만[1], 기계는 절대적인 색상 값으로 받아들이므로 기계가 광원의 영향을 받은 사물의 색상을 정확히 알기 위해서는 기계가 받아들이는 색상 값에서 광원의 영향을 제거해 주는 과정이 필요하다. 이를 카메라에서는 화이트 밸런싱 또는 칼라 밸런싱이라 부르기도 하며 이러한 과정을 위해서 다양한 기법들이 존재하는데, 영상 전체의 각 색상 채널의 평균값은 무채색이라는 Grey world 기법[2]부터, 영상에서 가장 높은 색상 값을 갖는 곳이 광원을 가장 잘 표현한다고 가정하는 White patch(Max RGB)기법[1], 색상 히스토그램 보정을 통한 화이트 밸런싱[3], 최근에는 무채색 지점에서의 각 색상 채널의 변화량이 모두 같다는 가정을 통해 무채색 지점을 찾는 Grey pixel[4] 등 많은 기법이 연구되었다. 본 연구에서는 칼라 히스토그램 보정으로 칼라 대비 개선 효과를 통해 각 색상 채널의 비율이 비슷한 곳을 무채색 지점으로 표본을 수집하여 해당 표본으로부터 칼라 벡터로서 PCA를 통한 대표 값을 추출하여 광원을 예측하는 기법을 소개한다.
Supported by : 정보통신기술진흥센터