Fast Detection of Disease in Livestock based on Machine Learning

기계학습을 이용한 가축 질병 조기 발견 방안

  • Published : 2015.05.26

Abstract

Recently, big data analysis which is based on machine learning has been gained a lot of attentions in various fields. Especially, agriculture is considered as one promising field that machine learning algorithm can be efficiently utilized and accordingly, lots of works have been done so far. However, most of the researches are focusing on the forecast of weather or analysis of genome, and machine learning algorithm for livestock management, especially which uses individual data of livestocks, e.g., temperature and movement, are not properly investigated yet. In this work, we propose fast abnormal livestock detection algorithm based on machine learning, more specifically expectation maximization, such that livestock which has problem can be efficiently and promptly found. In our proposed scheme, livestocks are divided into two clusters using expectation maximization based on their bionic data and the abnormal livestock can be detected by comparing the size of two clusters. Especially, we divide the case in which single livestock has problem and the case in which livestocks have epidemic such that fast response is enabled when epidemic case. Moreover, our algorithm does not need statistical information.

최근 기계학습에 기반을 둔 빅데이터 분석이 큰 관심을 받으면서 다양한 학문 분야에 기계 학습 방안들이 접목되고 있다. 그 대표적인 분야 중 하나로 농축산 분야를 들 수 있고 실제 다양한 기계학습 방안들이 농축산분야에 적용되고 있다. 하지만 농축산에서 활용되는 기계학습의 경우 대부분 농업분야의 기후예측 및 축산분야의 유전자 분석 쪽으로 연구가 집중되어있고, 가축의 생체 데이터를 활용한 기계학습 방안은 많은 연구가 이루어지지 않았다. 본 연구에서는 가축의 실시간 생체 데이터를 이용하여 문제가 발생한 개체를 조기에 발견하는 방안을 제안하였다. 제안 방안에서는 기댓값 최대화 알고리즘을 이용하여 단일 가축 개체들의 실시간 생체 데이터를 2개의 클러스터로 나누고 이 두 클러스터 사이즈의 변화를 통해서 이상 개체를 조기에 판단한다. 특히 단일 개체의 문제와 전염성 질병 여부를 나누어 판단하므로 구제역과 같은 전염성 질병의 경우 빠른 대응을 가능케 하여 국가적 손실을 줄일 수 있게 한다. 더불어 제안 방안은 측정 생체 데이터에 대한 통계적 정보 없이도 적응적으로 클러스터를 형성할 수 있으므로 축사 외부의 환경 요소에 의해서 생체 데이터의 통계적 특성이 변화는 상황에서도 적응적으로 동작할 수 있다.

Keywords