CO Adsorption and Reaction on Clean and Zn-deposited Au(211) surface

  • Jo, Sang-Wan ;
  • Mbuga, F. (Stanford University) ;
  • Ogasawara, H. (SLAC National Accelerator Laboratory) ;
  • Nilsson, A. (SLAC National Accelerator Laboratory)
  • Published : 2013.08.21

Abstract

Crucially, effective catalysts must be capable of efficiently catalyzing the protonation of adsorbed CO to adsorbed CHO or COH. One of the strategies is alloying with metals with higher oxygen affinity and Au-Zn alloy is one of the best candidates. At first, we made Au-Zn alloy using vacuum evaporating method. Zn was deposited on the Au(211) surface and the amount was estimated by X-ray photoelectron spectroscopy (XPS) using the relative sensitivity of Au 4f and Zn 3d. We investigated CO adsorption on a clean Au(211) and Au-Zn alloy using temperature-programmed desorption (TPD) and XPS. From the TPD results, we can conclude that the presence of the particular step sites at the Au(211) surface imparts stronger CO bonding and Zn atoms are sitting on the step sites at the Au(211) when Zn is deposited. The XPS results show the oxygen atoms of CO bond Zn atoms on Au-Zn surface. It should be an evidence that alloying Zn atoms that has high oxygen affinity into an electrocatalyst may allow CHO* to bind to the surface through both the carbon and oxygen atoms.

Keywords