Closeness Discrimination through Sentence Analysis in SNS

SNS에서의 문장 분석을 통한 친밀도 분별

  • Ko, YongSeok (Department of Software Engineering, Kumoh National Institute of Technology) ;
  • Lee, Hyun Ah (Department of Software Engineering, Kumoh National Institute of Technology)
  • 고용석 (금오공과대학교 컴퓨터소프트웨어공학과) ;
  • 이현아 (금오공과대학교 컴퓨터소프트웨어공학과)
  • Published : 2012.10.06

Abstract

인간관계 유지와 새로운 관계 형성을 지원하는 다양한 소셜 네트워크가 각광을 받으면서 사용자간 친밀도 분석에 대한 연구가 활발히 진행되고 있다. SNS에서 구성되는 사용자 개인 정보와 컨텐츠 공유 및 기타 활동에 대한 정보는 사용자의 특징을 파악할 수 있는 유용한 정보가 된다. 이러한 정보는 추천과 같은 여러 가지 서비스에서 사용될 수 있으며, 특히 사용자간 친밀도 분석을 통한 친구 추천에서 유용하게 사용된다. 기존 친밀도 분석 연구에서는 사용자간 프로필 유사도와 메시지 교환수 같은 양적 정보를 사용해 왔다. 본 논문에서는 사용자간 대화 내용을 분석한 내용적 정보를 친밀도 분석에 반영하기 위한 방법을 제안한다. 학습 데이터를 활용하여 구축된 친밀도 분별 시스템에서는 감탄사, 종결어미, 선어말어미, 이모티콘, 문장 길이의 내용적 자질 정보의 사용으로 기존 양적 정보 사용과 유사한 수준의 친밀도 분별 성능을 얻을 수 있었으며, 양적 정보와 내용적 정보를 동시 사용한 경우 소폭의 성능 향상을 얻었다.

Keywords