한국정보통신학회:학술대회논문집 (Proceedings of the Korean Institute of Information and Commucation Sciences Conference)
- 한국해양정보통신학회 2011년도 추계학술대회
- /
- Pages.219-222
- /
- 2011
퍼지모델을 이용한 유사성 기반의 동적 클러스터링
Similarity-based Dynamic Clustering Using Radar Reflectivity Data
- Lee, Han-Soo (Pusan National University) ;
- Kim, Su-Dae (Pusan National University) ;
- Kim, Yong-Hyun (Pusan National University) ;
- Kim, Sung-Shin (Pusan National University)
- 발행 : 2011.10.26
초록
어떠한 객체의 움직임을 추적하거나 상태변화를 추정하기 위해서 사용하는 방법으로는 칼만필터, 파티클 필터, 동적 클러스터링 등이 있다. 이 중 동적클러스터링 기법은 여러 프레임에 걸쳐 클러스터를 추적하고 변화 경향을 분석하는데 유용한 방법이다. 본 논문에서는 유사성 기반의 동적 클러스터링 방법을 제안하고 시뮬레이션 하여 검증하였다. 제안한 동적 클러스터링 방법은 연속된 각 프레임에 대해 유사한 특성을 가지는 클러스터를 인접한 프레임에 걸쳐 동일한 클러스터로 판단하는 방법이다. 각 정지 프레임에서의 클러스터의 특성을 이용하여 프레임의 변화를 분석하고 유사성이 높은 클러스터들을 동일 클러스터로 지정하였다. 유사성 판단 방법은 Mamdani방식의 퍼지 모델을 제안하였다. 제안한 알고리즘은 시간에 대해 연속성을 가진 레이더 반사도 데이터에 적용하였고 시간의 흐름에 따른 클러스터의 변화를 관측할 수 있었다.
There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.
키워드