한국전산유체공학회:학술대회논문집
- 2010.05a
- /
- Pages.551-555
- /
- 2010
ANALYSIS OF ELECTROWETTING DYNAMICS WITH LEVEL SET METHOD AND ASSESSMENT OF PROPERTY INTERPOLATION METHODS
레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 및 물성 보간 방법에 대한 고찰
Abstract
Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models. In level set method, in the mean time, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We viscosity, thermal conductivity, electrical conductivity, and permittivity, can be an alternative. I.e., the WHM gives more accurate results than the WAM method in certain circumstances. The interpolation scheme should be selected considering various characteristics including type of property, ratio of property of two fluids, geometry of interface, and so on.
Keywords