$Nb_2O_5$가 도핑된 (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ 무연 세라믹스의 PTCR 효과

The PTCR Effect in Lead-free (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ Ceramics Doped with $Nb_2O_5$

  • 발행 : 2008.06.19

초록

The positive temperature coefficient of resistivity (PTCR) effect in (1-x)$BaTiO_3$ - $x(Bi_{0.5}K_{0.5})TiO_3$ doped with $Nb_2O_5$ was investigated. $(Bi_{1/2}K_{1/2})TiO_3$ (BKT) is more environment-friendly than $PbTiO_3$ in order to use in PTC thermistors. The incorporation of 1 mol% BKT to $BaTiO_3$ increased the Curie temperature (Tc) to $148^{\circ}C$. Doping of $Nb_2O_5$ to $Ba_{0.99}(Bi_{0.5}K_{0.5})_{0.01}TiO_3$ (BaBKT) ceramic has enhanced its PTCR effects. For the sample containing 0.025 mol% $Nb_2O_5$, it showed good PTCR properties; low resistivity at room temperature (${\rho}_r$) of 30 $\Omega{\cdot}cm$, a high PTCR intensity of approximately $3.3\times10^3$, implying the ratio of maximum resistivity to minimum resistivity (${\rho}_{max}/{\rho}_{min}$) in the measured temperature range, and a large resistivity temperature factor (a) of 13.7%/$^{\circ}C$ along with a high Curie temperature (Tc) of $167^{\circ}C$. In addition, the cooling rate of the samples during the sintering process had an influence on their PTCR behavior. All the samples showed the best ${\rho}_{max}/{\rho}_{min}$ ratio when they have cooled down at a rate of $600^{\circ}C$/min.

키워드