Recognition of Noise Quantity by Neural Network using Linear Predictive Coefficient

선형예측계수를 사용한 신경회로망에 의한 잡음량의 인식

  • Published : 2008.10.31

Abstract

In order to reduce the noise quantity in a conversation under the noisy environment, it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. There fore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. In the experiment, the average values of the recognition results were 97.6% or more for various noises using Aurora2 database.

잡음환경 하의 회화에서 잡음량을 줄이고 신호처리 시스템의 성능을 향상시키기 위해서는 잡음량에 따라서 적응적으로 처리되는 신호처리 시스템이 필요하다. 따라서 본 논문에서는 선형예측계수를 사용하여 잡음량을 인식하는 방법을 제안하며, 본 잡음량 인식은 다양한 배경잡음에 의하여 열화된 3종류의 음성이 신경회로망에 의하여 학습되어진다. 본 실험에서는 Aurora2 데이터베이스를 사용하여 여러 잡음에 대하여 평균적으로 약 97.6% 이상의 양호한 인식결과를 확인할 수 있었다.

Keywords