• Title/Summary/Keyword: Linear predictive coefficient

Search Result 60, Processing Time 0.023 seconds

Recognition of Noise Quantity by Neural Network using Linear Predictive Coefficient (선형예측계수를 사용한 신경회로망에 의한 잡음량의 인식)

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • In order to reduce the noise quantity in a conversation under the noisy environment, it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. There fore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. In the experiment, the average values of the recognition results were 97.6% or more for various noises using Aurora2 database.

  • PDF

Recognition of Noise Quantity by Linear Predictive Coefficient of Speech Signal (음성신호의 선형예측계수에 의한 잡음량의 인식)

  • Choi, Jae-Seung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.120-126
    • /
    • 2009
  • In order to reduce the noise quantity in a conversation under the noisy environment it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. Therefore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. The performance of the proposed method for the noise quantity was evaluated based on the recognition rates for various noises. In the experiment, the average values of the recognition results were 98.4% or more for such noise using Aurora2 database.

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose a parametric model for analyzing the motion information obtained from the acceleration sensors to measure the activity of the human body. The motion of the upper body and the lower body does not occur at the same time, and the motion analysis method using a single motion sensor involves a lot of errors. In this study, the 3-axis accelerometer is attached to the arms and legs, the body's activity data are measured, the momentum of the arms and legs are calculated for each channel, and the linear predictive coefficient is obtained for each channel. The periodicity of the upper body and the lower body is determined by analyzing the correlation between the channels. The linear predictive coefficient and the periodic value are used as data to measure the type of exercise and the amount of exercise. In the proposed method, we measured four types of movements such as walking, stair climbing, slow hill climbing, and fast hill descending. In order to verify the usefulness of the parameters, the recognition results are presented using the linear predictive coefficient and the periodic value for each motion as the neural network input.

Speech and Noise Recognition System by Neural Network (신경회로망에 의한 음성 및 잡음 인식 시스템)

  • Choi, Jae-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • This paper proposes the speech and noise recognition system by using a neural network in order to detect the speech and noise sections at each frame. The proposed neural network consists of a layered neural network training by back-propagation algorithm. First, a power spectrum obtained by fast Fourier transform and linear predictive coefficients are used as the input to the neural network for each frame, then the neural network is trained using these power spectrum and linear predictive coefficients. Therefore, the proposed neural network can train using clean speech and noise. The performance of the proposed recognition system was evaluated based on the recognition rate using various speeches and white, printer, road, and car noises. In this experiment, the recognition rates were 92% or more for such speech and noise when training data and evaluation data were the different.

Speaker Recognition using LPC cepstrum Coefficients and Neural Network (LPC 켑스트럼 계수와 신경회로망을 사용한 화자인식)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2521-2526
    • /
    • 2011
  • This paper proposes a speaker recognition algorithm using a perceptron neural network and LPC (Linear Predictive Coding) cepstrum coefficients. The proposed algorithm first detects the voiced sections at each frame. Then, the LPC cepstrum coefficients which have speaker characteristics are obtained by the linear predictive analysis for the detected voiced sections. To classify the obtained LPC cepstrum coefficients, a neural network is trained using the LPC cepstrum coefficients. In this experiment, the performance of the proposed algorithm was evaluated using the speech recognition rates based on the LPC cepstrum coefficients and the neural network.

Neural-network-based Driver Drowsiness Detection System Using Linear Predictive Coding Coefficients and Electroencephalographic Changes (선형예측계수와 뇌파의 변화를 이용한 신경회로망 기반 운전자의 졸음 감지 시스템)

  • Chong, Ui-Pil;Han, Hyung-Seob
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • One of the main reasons for serious road accidents is driving while drowsy. For this reason, drowsiness detection and warning system for drivers has recently become a very important issue. Monitoring physiological signals provides the possibility of detecting features of drowsiness and fatigue of drivers. One of the effective signals is to measure electroencephalogram (EEG) signals and electrooculogram (EOG) signals. The aim of this study is to extract drowsiness-related features from a set of EEG signals and to classify the features into three states: alertness, drowsiness, sleepiness. This paper proposes a neural-network-based drowsiness detection system using Linear Predictive Coding (LPC) coefficients as feature vectors and Multi-Layer Perceptron (MLP) as a classifier. Samples of EEG data from each predefined state were used to train the MLP program by using the proposed feature extraction algorithms. The trained MLP program was tested on unclassified EEG data and subsequently reviewed according to manual classification. The classification rate of the proposed system is over 96.5% for only very small number of samples (250ms, 64 samples). Therefore, it can be applied to real driving incident situation that can occur for a split second.

GMM-Based Gender Identification Employing Group Delay (Group Delay를 이용한 GMM기반의 성별 인식 알고리즘)

  • Lee, Kye-Hwan;Lim, Woo-Hyung;Kim, Nam-Soo;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • We propose an effective voice-based gender identification using group delay(GD) Generally, features for speech recognition are composed of magnitude information rather than phase information. In our approach, we address a difference between male and female for GD which is a derivative of the Fourier transform phase. Also, we propose a novel way to incorporate the features fusion scheme based on a combination of GD and magnitude information such as mel-frequency cepstral coefficients(MFCC), linear predictive coding (LPC) coefficients, reflection coefficients and formant. The experimental results indicate that GD is effective in discriminating gender and the performance is significantly improved when the proposed feature fusion technique is applied.

Performance of Vocal Tract Area Estimation from Deaf and Normal Children's Speech (청각장애아동과 건청아동의 성도면적 추정 성능)

  • Kim Se-Hwan;Kim Nam;Kwon Oh-Wook
    • MALSORI
    • /
    • no.56
    • /
    • pp.159-172
    • /
    • 2005
  • This paper analyzes the vocal tract area estimation algorithm used as a part of a speech analysis program to help deaf children correct their pronunciations by comparing their vocal tract shape with normal children's. Assuming that a vocal tract is a concatenation of cylinder tubes with a different cross section, we compute the relative vocal tract area of each tube using the reflection coefficients obtained from linear predictive coding. Then, we obtain the absolute vocal tract area by computing the height of lip opening with a formula modified for children's speech. Using the speech data for five Korean vowels (/a/, /e/, /i/, /o/, and /u/), we investigate the effects of the sampling frequency, frame size, and model order on the estimated vocal tract shape. We compare the vocal tract shapes obtained from deaf and normal children's speech.

  • PDF

Prediction of Glucose Concentration in a Glucose-Lactose Mixture Based on the Reflective Optical Power at Dual Probe Wavelengths

  • Gao, Song;Yue, Wenjing;Lee, Sang-Shin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.199-203
    • /
    • 2016
  • An enzyme-free optical method is proposed for estimating high concentrations of glucose in a glucose-lactose mixture, based on a predictive equation that takes advantage of the reflective optical power observed at two discrete wavelengths. Compared to the conventional absorption spectroscopy method based on Beer's Law, which is mainly valid for concentrations below hundreds of mg/dL, the proposed scheme, which relies on reflection signals, can be applied to measure higher glucose concentrations, of even several g/dL in a glucose-lactose mixture. Two probe wavelengths of 1160 and 1300 nm were selected to provide a linear relationship between the reflective power and pure glucose/lactose concentration, where the relevant linear coefficients were derived to complete the predictive equation. Glucose concentrations from 2 to 7 g/dL in a glucose-lactose mixture were efficiently estimated, using the established predictive equation based on monitored reflective powers. The standard error of prediction was 1.17 g/dL.

A Method of Evaluating Korean Articulation Quality for Rehabilitation of Articulation Disorder in Children

  • Lee, Keonsoo;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3257-3269
    • /
    • 2020
  • Articulation disorders are characterized by an inability to achieve clear pronunciation due to misuse of the articulators. In this paper, a method of detecting such disorders by comparing to the standard pronunciations is proposed. This method defines the standard pronunciations from the speeches of normal children by clustering them with three features which are the Linear Predictive Cepstral Coefficient (LPCC), the Mel-Frequency Cepstral Coefficient (MFCC), and the Relative Spectral Analysis Perceptual Linear Prediction (RASTA-PLP). By calculating the distance between the centroid of the standard pronunciation and the inputted pronunciation, disordered speech whose features locates outside the cluster is detected. 89 children (58 of normal children and 31 of children with disorders) were recruited. 35 U-TAP test words were selected and each word's standard pronunciation is made from normal children and compared to each pronunciation of children with disorders. In the experiments, the pronunciations with disorders were successfully distinguished from the standard pronunciations.