Accurate Intrusion Detection using n-Gram Augmented Naive Bayes

N-Gram 증강 나이브 베이스를 이용한 정확한 침입 탐지

  • Published : 2008.10.31

Abstract

In many intrusion detection applications, n-gram approach has been widely applied. However, n-gram approach has shown a few problems including double counting of features. To address those problems, we applied n-gram augmented Naive Bayes directly to classify intrusive sequences and compared performance with those of Naive Bayes and Support Vector Machines (SVM) with n-gram features by the experiments on host-based intrusion detection benchmark data sets. Experimental results on the University of New Mexico (UNM) benchmark data sets show that the n-gram augmented method, which solves the problem of independence violation that happens when n-gram features are directly applied to Naive Bayes (i.e. Naive Bayes with n-gram features), yields intrusion detectors with higher accuracy than those from Naive Bayes with n-gram features and shows comparable accuracy to those from SVM with n-gram features.

기계 학습을 응용한 많은 침입 탐지 시스템들은 n-그램 접근 방법을 주로 쓰고 있다. 그러나, n-그램 접근 방법은 주어진 시퀀스에서 획득한 n-그램들이 서로 겹치는 문제들을 가지고 있다. 본 연구에서는 이러한 문제들을 해결하기 위해, n-그램 증강 나이브 베이스 (n-gram augmented naive Bayes) 알고리즘을 침입 시퀀스의 분류에 적용하였다. 제안된 시스템의 성능을 평가하기 위해 n-그램 특징들을 사용하는 일반 나이브 베이스 (naive Bayes) 알고리즘과 서포트 벡터 머신 (support vector machines) 알고리즘과 본 연구에서 제안한 n-그램 증강 나이브 베이스 알고리즘을 비교하였다. 뉴 멕시코 대학의 벤치마크 데이터에 적용해 본 결과에 따르면, n-그램 증강 방법이, n-그램이 나이브 베이스에 직접 적용되는 경우(예: n-그램 특징을 사용하는 일반 나이브 베이스), 생기는 독립성 가정에 대한 위배 문제도 해결하면서, 동시에 n-그램 특징을 사용하는 일반 나이브 베이스보다 더 정확하며, n-그램 특징을 사용하는 SVM과 필적할만한 수준의 침입 탐지기를 생성해 내었다.

Keywords