Simulation Study on the Efficacy of Toxin Removal by Pulsatile Flow in Blood Purification Systems that use Semipermeable Membranes

  • Lim, Ki-Moo (Division of Mechanical Engineering & Mechatronics, Kangwon Univ.) ;
  • Shim, Eun-Bo (Division of Mechanical Engineering & Mechatronics, Kangwon Univ.)
  • Published : 2008.11.05

Abstract

Using numerical models, we investigated the efficiency of toxin removal using pulsatile flow in blood purification systems that use semipermeable membranes. The model consisted of a three-compartmental mass transfer model for the inside body and a solute kinetics model for the dialyzer. The model predicted the toxin concentration inside the body during blood purification therapy, and the toxin removal efficiencies at different flow configurations were compared quantitatively. According to the simulation results, the clearances of urea and ${\beta}_2$ microglobulin (B2M) using a pulsatile pump were improved by up to 30.9% for hemofiltration, with a 2.0% higher urea clearance and 4.6% higher B2M clearance for high flux dialysis, and a 3.9% higher urea clearance and 8.2% higher B2M clearance for hemodiafiltration. These results suggest that using a pulsatile blood pump in blood purification systems with a semipermeable membrane improves the efficacy of toxin removal, especially for large molecules and hemofiltration treatment.

Keywords