Proceedings of the Korean Institute of Building Construction Conference (한국건축시공학회:학술대회논문집)
- 2007.11a
- /
- Pages.109-113
- /
- 2007
Simulation-Based Stochastic Markup Estimation System $(S^2ME)$
시뮬레이션을 기반(基盤)으로 하는 영업이윤율(營業利潤率) 추정(推定) 시스템
- Published : 2007.11.16
Abstract
This paper introduces a system, Simulation based Stochastic Markup Estimation System (S2ME), for estimating optimum markup for a project. The system was designed and implemented to better represent the real world system involved in construction bidding. The findings obtained from the analysis of existing assumptions used in the previous quantitative markup estimation methods were incorporated to improve the accuracy and predictability of the S2ME. The existing methods has four categories of assumption as follows; (1) The number of competitors and who is the competitors are known, (2) A typical competitor, who is fictitious, is assumed for easy computation, (3) the ratio of bid price against cost estimate (B/C) is assumed to follow normal distribution, (4) The deterministic output obtained from the probabilistic equation of existing models is assumed to be acceptable. However, these assumptions compromise the accuracy of prediction. In practice, the bidding patterns of the bidders are randomized in competitive bidding. To complement the lack of accuracy contributed by these assumptions, bidding project was randomly selected from the pool of bidding database in the simulation experiment. The probability to win the bid in the competitive bidding was computed using the profile of the competitors appeared in the selected bidding project record. The expected profit and probability to win the bid was calculated by selecting a bidding record randomly in an iteration of the simulation experiment under the assumption that the bidding pattern retained in historical bidding DB manifest revival. The existing computation, which is handled by means of deterministic procedure, were converted into stochastic model using simulation modeling and analysis technique as follows; (1) estimating the probability distribution functions of competitors' B/C which were obtained from historical bidding DB, (2) analyzing the sensitivity against the increment of markup using normal distribution and actual probability distribution estimated by distribution fitting, (3) estimating the maximum expected profit and optimum markup range. In the case study, the best fitted probability distribution function was estimated using the historical bidding DB retaining the competitors' bidding behavior so that the reliability was improved by estimating the output obtained from simulation experiment.