How multipath error influences modernized GNSS ambiguity resolution in urban areas

  • Kubo, Nobuaki (Tokyo University of Marine Science and Technology) ;
  • Yasuda, Akio (Tokyo University of Marine Science and Technology)
  • Published : 2006.10.18

Abstract

Commercial uses of GPS have been growing rapidly with applications for aircraft, ship, and land vehicle navigation as well as for surveying and time keeping. The next generation GPS and Japanese QZS (Quasi Zenith Satellite) will provide three different civil signals. Galileo will also provide several types of civil signals. The availability of the third civil frequency has obvious advantages to instantaneous carrier phase accuracy and ambiguity resolution for centimeter level measurements. This paper discusses the effects of additional new civil signals for the high accuracy positioning in urban areas based on simulation using practical raw data. As for constellation, only GPS and GPS+QZS are considered. For positioning, a short distance baseline is assumed in order to disregard atmosphere effects. In this simulation, mask angle and signal conditions were fixed and ambiguity success rates were compared between different triple frequency combination scenarios. The coefficient of reflection was set randomly from 0.05 to 0.5 and the multipath delay was also set randomly from 5-100 m. Visible satellites and signal strength were determined by raw data collected in Tokyo by car. These simulation results have confirmed that the availability of high accuracy positioning will increase in all scenarios if we use GPS+QZS with triple frequencies.

Keywords