Image Classification Into Object/Non-object Classes for Content-based Image Retrieval

내용기반 영상검색을 위한 객체 및 비객체 영상의 분류 방법

  • 박소정 (부산대학교 컴퓨터공학과) ;
  • 김성영 (금오공과대학교 컴퓨터공학부) ;
  • 김민환 (부산대학교 컴퓨터공학과)
  • Published : 2004.05.01

Abstract

본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.

Keywords