다변량 통계 분석 및 질량 균형법을 이용한 제주도 지하수의 수질 요소 분리

  • 발행 : 2004.09.01

초록

Using factor analysis and bivariate comparisons of major components in ground water, three geochemical processes were identified as controlling factors of ground water chemistry; 1) natural mineralization by water rock interactions, 2) effect of seawater which includes salinization by seawater near seashores and deposition of sea salt, and 3) nitrate contamination by N fertilization. Contribution of rainfall was also estimated from the measured composition of wet deposition. The geochemical processes were separated using total alkalinity as an indicator for natural mineralization, Cl for effect of seawater, and nitrate for N fertilization. Relatively high correlation of major components with nitrate suggests that nitrification of nitrogenous fertilizers significantly affects ground water chemistry. Total cations derived from nitrate sources have good linearity for nitrate in equivalent basis with a slope of 1.8, which is a mean of proton production coefficients in nitrification of two major compounds in nitrogenous fertilizers, ammonium and urea. Contribution of nitrate sources to base cations, Cl, and SO$_4$ in ground water was determined considering maximum contribution of natural mineralization to estimate a threshold of the effect of N fertilization for ground water chemistry, which shows W fertilization has a greatest effect than any other processes in ground water with nitrate concentration greater than 50 mg/L for Ca, Mg, Na and with concentration greater than 30 mg/L for Cl and SO$_4$.

키워드