데이터 마이닝에서 배깅과 부스팅 알고리즘 비교 분석

  • Published : 2003.05.23

Abstract

데이터 마이닝의 여러 기법중 모형의 변동성을 줄이고 정확도가 높은 분류자를 형성하기 위하여 다양한 앙상블 기법이 연구되고 있다. 그 중에서 배깅과 부스팅 방법이 가장 널리 알려져 있다. 여러 가지 데이터에 이 두 방법을 적용하여 오분류율을 구하여 비교한 후 각 데이터 특성을 입력변수로 하고 배깅과 부스팅 중 더 낮은 오분류율을 갖는 알고리즘을 목표변수로 하여 의사결정나무를 형성하였다. 이를 통해서 배깅과 부스팅 알고리즘이 어떠한 데이터 특성의 패턴이 존재하는지 분석한 결과 부스팅 알고리즘은 관측치, 입력변수, 목표변수 수가 큰 것이 적합하고 반면에 배깅 알고리즘은 관측치, 입력변수, 목표변수 수의크기가 작은 것이 적합함을 알 수 있었다.

Keywords