ELASTIC WAVE RESONANCE SCATTERING FROM AN ELASTIC CYLINDER

탄성체로 인한 탄성파의 공명산란

  • 이희남 (순천대학교 기계자동차공학부)
  • Published : 2003.05.01

Abstract

The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem, elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new method computes exact $\pi$ radian phase shills through resonances and anti-resonances while RST produces physically unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase shifts through resonances and antiresonances obtained by the proposed method are not exactly $\pi$ radians due to energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct behavior compared to those by RST.

Keywords