Memory Adaptation in Finding Frequent Itemsets over Data Streams

데이터 스트림에서 빈발항목 탐색을 위한 메모리 사용량 최적화

  • 김민정 (연세대학교 컴퓨터 과학과) ;
  • 장중혁 (연세대학교 컴퓨터 과학과) ;
  • 이원석 (연세대학교 컴퓨터 과학과)
  • Published : 2003.10.01

Abstract

컴퓨팅 환경의 발달로 방대한 양의 정보들이 매우 빠른 속도로 생성되고 있다. 구성 요소가 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 마이닝 방법은 이들 정보로부터 중요한 지식을 효과적으로 얻을 수 있는 방법으로 최근 들어 다양한 방법들이 활발히 제안되고 있다. 이러한 마이닝 방법에서는 지속적으로 확장되는 데이터 스트림의 특성으로 수행과정에서 메모리 사용량을 가용 범위 내로 제한하는 것이 중요한 고려 사항이 되고 있다. 본 논문에서는 데이터 스트림에서 빈발 항목을 탐색하는데 있어서 가용 메모리 범위에서 최적의 메모리를 사용하여 최상의 마이닝 결과를 얻을 수 있도록 하는 메모리 사용량 최적화 방법을 제시한다.

Keywords