Laboratory-scale Microcosm Studies in Assessing Enhanced Bioremediation Potential of BTEX and MTBE under Various Electron Acceptors in Contaminated Soil

  • 오인석 (경기대학교 토목환경공학부 환경공학과) ;
  • 이시진 (경기대학교 토목환경공학부 환경공학과) ;
  • 장순웅 (경기대학교 토목환경공학부 환경공학과)
  • Published : 2003.09.01

Abstract

Accidental release of petroleum products from underground storage tank(USTs) is one of the most common causes of groundwater contamination. BTEX is the major components of fuel oils, which are hazardous substances regulated by many nations. In addition to BTEX, other gasoline consituents such as MTBE(methyl-t-buthyl ether), anphthalene are also toxic to humans. Natual attenuation processes include physic, chemical, and biological trasformation. Aerobic and anaerobic biodegradation are believed to be the major processes that account for both containment of the petroleum-hydrocarbon plum and reduction of the contaminant concentrations. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Anaerobic processes refer to a variety of biodegradation mechanisms that use nitrate, ferric iron, sulfate, and carbon dioxide as terminal electron accepters. The objectives of this study was to conduct laboratory-scale microcosm studies in assessing enhanced bioremediation potential of BTEX and MTBE under various electron accepters(aerobic, nitrate, ferric iron, sulfate) in contaminated Soil. these results suggest that, presents evidence and a variety pattern of the biological removal of aromatic compounds under enhanced nitrate-, Fe(III)-, sulfate-reducing conditions.

Keywords