Probabilistic Dependency Grammar Induction using Internal Dependency Relation in Words

어절 내부 의존관계를 고려한 확률 의존 문법 학습

  • Choi, Seon-Hwa (Dept. of Computer Science, Chonnam National University) ;
  • Park, Hyuk-Ro (Dept. of Computer Science, Chonnam National University)
  • Published : 2001.10.12

Abstract

본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 특히 의존 문법 생성을 위해 확률 재추정 알고리즘을 의존문법생성에 맞도록 변형하여 학습하였으며 정확한 문법 생성 및 회귀데이터(Data Sparseness)문제 해결을 위해서 구성요소의 대표 지배소들 간의 의존관계 만을 학습했던 기존 연구와는 달리 구성요소 내부의 의존관계까지 학습하는 방법을 제안한다. KAIST 의 트리 부착 코퍼스 31,086 문장에서 추출한 25,000 문장의 Tagged Corpus 을 가지고 한국어 확률 의존 문법 학습을 시도 하였다. 그 결과 초기문법을 10.97% 에서 23.73% 까지 줄인 2,349 개의 정확한 문법을 얻을 수 있었다. 문법의 정확성을 실험 하기 위해 350 개의 실험문장을 Parsing 한 결과 69.61%의 파싱 정확도를 보였다. 이로서 구성요소 내부의 의존관계 학습으로 얻어진 의존문법이 더 정확했으며, 회귀데이터 문제 또한 극복할 수 있음을 알 수 있었다.

Keywords