Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2001.04b
- /
- Pages.475-477
- /
- 2001
- /
- 1598-5164(pISSN)
Personalized Recommendation based on Item Dependency Map
전자상거래를 위한 Item Dependency Map 기반 개인화된 추천기법
Abstract
본 논문은 사용자의 구매 패턴을 찾아서 사용자가 원하는 상품을 추천하는 알고리즘을 제안하고자 한다. 제안하고 있는 item dependency map은 구매된 상품간의 관계를 수식화 하여 행렬의 형태로 표현한 것이다. Item dependency map의 값은 사용자가 A라는 상품을 구매한 후 B 상품을 살 확률이다. 이런 정보를 가지고 있는 item dependency map은 홉필드 네트웍(Hopfield network)에서 연상을 위한 패턴 값으로 적용된다. 홉필드 네트웍은 각 노드사이의 연결가중치에 기억하고자 하는 것들을 연상시킨 뒤 어떤 입력을 통해서 전체 네트워크가 어떤 평형상태에 도달하는 방식으로 작동되는 신경망 중의 하나이다. 홉필드 네트웍의 특징 중의 하나는 부분 정보로부터 전체 정보를 추출할 수 있는 것이다. 이러한 특징을 가지고 사용자들의 일반적인 구매패턴을 일부 정보만 가지고 예측할 수 있다. Item dependency map은 홉필드 네트웍에서 사용자들의 그룹별 패턴을 학습하는데 사용된다. 따라서 item dependency map이 얼마나 사용자 구매패턴에 대한 정보를 가지고 있는지에 따라 그 결과가 결정되는 것이다. 본 논문은 정확한 item dependency map을 계산해 내는 알고리즘을 주로 논의하겠다.
Keywords